Riemann Surfaces Example Sheet 3

Lent 2023

Please send any comments or corrections to me at hjrw2@cam.ac.uk.

- 1. Suppose $\Omega \subseteq \mathbb{C}$ is a discrete additive subgroup. [Here, discrete means that the subspace topology on Ω is discrete.] Show that one of the following holds:
 - (i) $\Omega = \{0\}$, or
 - (ii) $\Omega = \mathbb{Z}\omega$ for some $\omega \neq 0$, or
 - (iii) $\Omega = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ with $\omega_1, \omega_2 \neq 0$ and $\omega_2/\omega_1 \notin \mathbb{R}$.
- 2. Let f be a simply periodic analytic function on \mathbb{C} with periods \mathbb{Z} . Suppose furthermore that f(x+iy) converges uniformly in x to (possibly infinite) limits as $y \to \pm \infty$. Show that $f(z) = \sum_{k=-n}^{n} a_k e^{2\pi i k z}$, i.e. f(z) has a finite Fourier expansion.
- 3. Let f be a non-constant elliptic function with respect to a lattice $\Lambda \subset \mathbb{C}$, and let $P \subset \mathbb{C}$ be a fundamental parallelogram. Using the argument principle and, if necessary, slightly perturbing P, show that the number of zeros of f in P is the same as the number of poles, both counted with multiplicities.

[This is also a consequence of the valency theorem, but the point of this question is that this more direct argument via contour integration also works.]

4. With the notation of the previous question, let the degree of f be n, let a_1, \ldots, a_n denote the zeros of f in a fundamental parallelogram P, and let b_1, \ldots, b_n denote the poles (both with possible repeats). By considering the integral

$$\frac{1}{2\pi i} \int_{\partial P} z \frac{f'(z)}{f(z)} dz$$

and, if required, also slightly perturbing P, show that

$$\sum_{j=1}^n a_j - \sum_{j=1}^n b_j \in \Lambda.$$

5. Suppose a is a complex number with |a| > 1. Show that any analytic function f on \mathbb{C}_* with f(az) = f(z) for all $z \in \mathbb{C}_*$ must be constant, but that there is a non-constant meromorphic function f on \mathbb{C}_* with f(az) = f(z) for all $z \in \mathbb{C}_*$.

1

Lent 2023 2

6. Let $\wp(z)$ denote the Weierstrass \wp -function with respect to a lattice $\Lambda \subset \mathbb{C}$. Show that \wp satisfies the differential equation $\wp''(z) = 6\wp(z)^2 + A$, for some constant $A \in \mathbb{C}$. Show that there are at least three points and at most five points (modulo Λ) at which \wp' is not locally injective.

7. With notation as in the previous question, and a complex number with $2a \notin \Lambda$, show that the elliptic function

$$h(z) = (\wp(z-a) - \wp(z+a))(\wp(z) - \wp(a))^2 - \wp'(z)\wp'(a)$$

has no poles on $\mathbb{C} \setminus \Lambda$. By considering the behaviour of h at z = 0, deduce that h is constant, and show that this constant is zero.

- 8. Find an explicit regular covering map of Riemann surfaces $\mathbb{D} \to \mathbb{D}_*$, where \mathbb{D} denotes the open unit disc, as usual, and \mathbb{D}_* denotes the punctured disc.
- 9. Show that $\mathbb{C} \setminus \{P,Q\}$, where $P \neq Q$, is not conformally equivalent to \mathbb{C} or \mathbb{C}_* , and deduce from the uniformization theorem that it is uniformized by the open unit disc \mathbb{D} . Show that the same is true for any domain in \mathbb{C} whose complement has more than one point.
- 10. Let R be a compact Riemann surface of genus g and let p_1, \ldots, p_n be distinct points of R with $n \ge 1$. Show that $R \setminus \{p_1, \ldots, p_n\}$ is uniformized by the open unit disc $\mathbb D$ if and only if 2g 2 + n > 0, and by $\mathbb C$ if and only if 2g 2 + n = 0 or -1.
- 11. Let f, g be non-constant meromorphic functions on a compact Riemann surface R. Show that there is a non-zero polynomial $P(w_1, w_2)$ such that P(f, g) = 0.

[Hint: Suppose f, g have valencies m, n respectively, and put d = m + n. Show that it is possible to choose complex numbers a_{ij} , not all zero, such that the function

$$\sum_{j=0}^{d} \sum_{k=0}^{d} a_{jk} f(z)^{j} g(z)^{k}$$

has at least $(d^2 + 2d)$ distinct zeros in R. Show that it cannot have more than d^2 poles, and deduce that it must be identically zero on R.

12. Fix $d \ge 2$ and let $F'_d := \{(x,y) \in \mathbb{C}^2 : x^d + y^d = 1\}$. Show that the coordinate projections give F'_d the structure of a Riemann surface, and use topological gluing to find a compact Riemann surface F_d into which F'_d analytically embeds. Prove that the coordinate maps extend to meromorphic functions on F_d .

Riemann Surfaces Example sheet 3